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SUMMARY

We describe the landscape of genomic alterations in
cutaneous melanomas through DNA, RNA, and pro-
tein-based analysis of 333 primary and/or metastatic
melanomas from 331 patients. We establish a frame-
work for genomic classification into one of four sub-
types based on the pattern of the most prevalent
significantly mutated genes: mutant BRAF, mutant
RAS, mutantNF1, and Triple-WT (wild-type). Integra-
tive analysis reveals enrichment ofKITmutations and
focal amplifications and complex structural rear-
rangements as a feature of the Triple-WT subtype.
We found no significant outcome correlation with
genomic classification, but samples assigned a tran-
scriptomic subclass enriched for immune gene
expression associated with lymphocyte infiltrate on
pathology review and high LCK protein expression,
a T cell marker, were associated with improved pa-
tient survival. This clinicopathological and multi-
dimensional analysis suggests that the prognosis of
melanoma patients with regional metastases is
influenced by tumor stroma immunobiology, offering
insights to further personalize therapeutic decision-
making.
INTRODUCTION

Diagnosis and surgical resection of early-stage primary cuta-

neous melanoma is often curative for patients with localized dis-

ease, but the prognosis is less favorable for patients with

regional metastases. Using the technique of lymphatic mapping

and sentinel lymph node (SLN) biopsy (Gershenwald and Ross,

2011), early surgical intervention for patients with microscopic

regional lymph node metastases (i.e., positive SLNs) has

recently been found useful for prognosis, may improve survival

in a subgroup of such patients, and serves to guide the use of

adjuvant therapy (Morton et al., 2014). Overall, survival has his-

torically been poor for patients with distant metastatic disease,

and response to conventional chemotherapy has been infre-

quent (Balch et al., 2009).

Hot-spot mutations in the V600 codon of BRAF (35%–50%

of melanomas) and Q61 codons (less frequently, the G12 or

G13 codon) of NRAS (10%–25%) led to the development of

highly selective kinase inhibitors that target the MAPK

pathway (Tsao et al., 2012). Recent clinical trials have pro-

vided proof of principle that therapeutic agents targeting acti-
vating mutations for patients with unresectable disease and/or

distant melanoma metastases can be identified through ge-

netic analyses. The Food and Drug Administration (FDA) has

approved three such inhibitors: vemurafenib, dabrafenib, and

trametinib (McArthur and Ribas, 2013). Although antitumor re-

sponses have been dramatic, they have rarely been durable.

Additional targets and combinatorial treatment strategies are

clearly needed.

Recent studies using next-generation sequencing (NGS) have

identified additional genetic aberrations (Berger et al., 2012; Ho-

dis et al., 2012; Krauthammer et al., 2012) that provide insights

into the biological heterogeneity of melanoma and also have

potentially important implications for prognosis and therapy.

However, previous biomarker studies in melanoma have either

focused on single high-throughput platforms of large sample

sets (Hodis et al., 2012; Krauthammer et al., 2012; Winnepen-

ninckx et al., 2006) or multi-platform analyses of fewer samples

(Mann et al., 2013; Rakosy et al., 2013). No prior study has inte-

grated multi-platform data from such a large cohort of clinico-

pathologically well-annotated samples.

To address this gap, The Cancer Genome Atlas (TCGA) pro-

gram performed a systematic multi-platform characterization

of 333 cutaneous melanomas at the DNA, RNA, and protein

levels to create a catalog of somatic alterations and describe

their potential biological and clinical significance. We estab-

lished a genomic/transcriptomic framework of classification

that has potential implications for prognosis and therapy and

that may relate to recent advances in immunotherapy.
RESULTS

Multi-dimensional Genomic Characterization
of Cutaneous Melanoma
Compared to most solid tumors, primary melanomas are gener-

ally small at diagnosis; and in routine clinical practice, most or all

of primary tumor tissue is used for diagnostic evaluation and is

not available for molecular analyses. Accordingly, our study

included samples from thick primaries, regional, and distant

metastatic sites.

We collected frozen tumor samples from 333 cutaneous pri-

mary and/or metastatic melanomas with matched peripheral

blood from 331 adult patients from 14 tissue source sites under

protocols approved by the relevant Institutional Review Boards.

Clinicopathological characteristics are summarized in Table

S1A. The samples consisted of 67 (20%) primary cutaneousmel-

anomas (all originating from non-glabrous skin) and 266 (80%)

metastases. Of the metastases, 212 were from regional sites

(160 from regional lymph nodes and 52 from regional skin/soft

tissue), and 35 were from distant sites (Table S1A–S1C). At initial
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diagnosis, patients had primary tumors (whether or not the pri-

mary tumors were included in the TCGA molecular analyses)

that were thicker (median and mean, 2.7 mm and 4.9 mm,

respectively) than in population-based registry data (Baade

et al., 2012; Criscione and Weinstock, 2010). Matched primary

and metastatic samples were available for complete molecular

analyses from only two patients.

We performed six types of global molecular analysis: solution-

based hybrid-capture whole-exome sequencing (WES, n = 320

samples), DNA copy-number profiling by Affymetrix SNP 6.0 ar-

rays (n = 333), mRNA sequencing (n = 331), microRNA

sequencing (n = 323), DNA methylation profiling (n = 333), and

reverse-phase protein array (RPPA) expression profiling (n =

202). Complete data for all six platforms were available for a

core set of 199 samples. TERT promoter mutations at C228T

and C250T were assessed by PCR-Sanger sequencing in a sub-

set of 115 samples. Deep-coverage whole-genome sequencing

and low-pass whole-genome sequencing were performed on

subsets of 38 samples and 119 samples, respectively. Clinico-

pathological and molecular data associated with each patient

are presented in a patient-centric table (Table S1D); complete

methods and results of the analyses are described in the Supple-

mental Experimental Procedures. The standard data package

associated with this report (frozen on November 14, 2013)

is available at the GDAC Firehose (http://gdac.broadinstitute.

org/runs/stddata__2013_11_14/data/SKCM/20131114) and at

Data Portal (https://tcga-data.nci.nih.gov/docs/publications/

skcm_2015/).

Identification of Significantly Mutated Genes
WES was performed on paired tumor and germline normal

genomic DNA from 318 patients, including primary (n = 58) and

metastatic (n = 262) melanomas with a mean exon coverage of

873, adequate for detecting a single-nucleotide variant (SNV)

at an allelic fraction of 0.3 with a power of 80% (Carter et al.,

2012) (see Supplemental Experimental Procedures). In total,

we identified 228,987 mutations, including both SNVs and in-

dels. Targeted validation of 455 SNVs observed in the signifi-

cantly mutated genes (see below) in a subset of tumor DNAs

(n = 277) revealed an overall validation rate of 96% (see Supple-

mental Experimental Procedures). The mean mutation rate was

16.8 mutations/Mb, the highest reported for any cancer type

thus far analyzed by TCGA (Lawrence et al., 2013) (Figure S1A)

and corroborates findings from other NGS melanoma studies

(e.g., Hodis et al., 2012) and other ultraviolet (UV)-driven skin

cancers such as basal and squamous cell carcinomas (e.g.,

Jayaraman et al., 2014). Consistent with UV radiation’s muta-

genic role in melanoma, most samples showed a high fraction

of C>T transitions at dipyrimidines (median 77.7%; interquartile

range 69.4%–82.6%) and CC>TT mutations (median 3.9%; in-

terquartile range 2.0%–5.7%) (Figure S1A). We classified sam-

ples in which C>T transitions at dipyrimidine sites accounted

for more than 60% or CC>TT mutations more than 5% of the to-

tal mutation burden as possessing a UV signature (Brash, 2015):

44 (76%) of the 58 primary and 221 (84%) of the 262 metastatic

samples had such a signature.

Given the statistical challenge of defining significance against

a high background mutation rate, we used two algorithms to
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define significantly mutated genes (SMGs): MutSig and InVEx

(Hodis et al., 2012; Lawrence et al., 2014; Lawrence et al.,

2013). MutSig takes into consideration patient-specific mutation

frequencies and spectra, mRNA expression levels, and gene-

specific DNA replication times; InVEx controls for patient-spe-

cific, gene-specific, and nucleotide-context-specific mutation

probabilities (see Supplemental Experimental Procedures).

WES analysis by InVEx identified 13 SMGs (Bonferroni p <

0.05, or 20 SMGs at Q < 0.1) by either functional mutation burden

or loss-of-function tests, all of them among the 42 SMGs identi-

fied by MutSig (Q < 0.1) (Tables S2A–S2D and Figure S1B). The

13 SMGs included previously described melanoma oncogenes

and tumor suppressors (BRAF, NRAS, CDKN2A, TP53, and

PTEN), as well as recently identified mutated genes (RAC1,

MAP2K1, PPP6C, and ARID2) (Hodis et al., 2012; Krauthammer

et al., 2012; Nikolaev et al., 2012). Our cohort also had sufficient

statistical power to annotate several previously implicated mela-

noma genes as SMGs (NF1, IDH1, and RB1) (Andersen et al.,

1993; Draper et al., 1986; Lopez et al., 2010). We also identified

DDX3X, a putative RNA helicase, as a novel candidate mela-

noma SMG (Figures 1A and S1C). SMGs with UV-induced

hot-spot mutations included RAC1 (6.9%) and IDH1 (6.2%) (Fig-

ure S1C). The RAC1 hot-spot mutation has been linked to resis-

tance to BRAF inhibitors (Van Allen et al., 2014; Watson et al.,

2014). Similar to findings in other tumor types, IDH1-mutated

samples were enriched in the high CpG islandmethylator pheno-

type (CIMP) subgroup (Figures S1D–S1G) (Noushmehr et al.,

2010).

Additionally, two genes (MRPS31 and RPS27) that encode ri-

bosomal proteins were identified by MutSig as SMGs. Both

possess presumptive UV-induced hot-spot mutations in their

50 UTR (in �5% and �9% of samples, respectively) (Fig-

ure S1H). MRPS31 encodes a mitochondrial ribosomal protein

not previously associated with cancer; RPS27 is a component

of the 40S ribosomal subunit whose overexpression has been

reported in melanoma (Santa Cruz et al., 1997). The recurrent

mutation in RPS27 was recently shown to expand the 50 TOP

element, a motif known to control mRNA translation regulated

through the PI(3)K/AKT and mTOR pathways (Dutton-Regester

et al., 2014).

Genomic Classification of Melanoma
One of the most significant successes in clinical practice has

been the development of targeted therapies for patients with

activating driver mutations (McArthur and Ribas, 2013; Tsao

et al., 2012). We therefore classified melanomas based on iden-

tified SMGs and their distribution in our cohort (n = 318 cases

with WES data; described below, Figure 1A, and Table 1) to

create a framework that could be used for personalized thera-

peutic decisions.

BRAF Subtype

The largest genomic subtype is defined by the presence of

BRAF hot-spot mutations. Of the 318, 52% (n = 166) harbored

BRAF somatic mutations. Of those, 145 targeted the well-

documented V600 amino acid residue: V600E (n = 124),

V600K (n = 18), and V600R (n = 3). The second most frequent

BRAF mutation targeted the K601 residue (n = 5). As in previ-

ous reports (Pollock et al., 2003), both BRAF V600 and K601

http://gdac.broadinstitute.org/runs/stddata__2013_11_14/data/SKCM/20131114
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Figure 1. Landscape of Driver Mutations in Melanoma

(A) Total number of mutations, age at melanoma accession, and mutation subtype (BRAF, RAS [N/H/K],NF1, and Triple-WT) are indicated for each sample (top).

(Not shown are one hyper-mutated and one co-occurring NRAS BRAF hot-spot mutant). Color-coded matrix of individual mutations (specific BRAF and NRAS

mutations indicated) (middle), type of melanoma specimen (primary or metastasis), and mutation spectra for all samples (bottom) are indicated. For the two

samples with both a matched primary and metastatic sample, only the mutation information from the metastasis was included.

(B) BRAF mutations that co-occur with RAS family member and NF1 mutations are illustrated across the BRAF protein.

(C) Fraction of BRAF V600/K601E and non-V600/K601E co-occurring with the RAS (N/H/K), NF1, NF1/RAS (N/H/K) combined cohort and no NF1/RAS (N/H/K)

mutations.

(D) NF1 mutations found in melanoma whole-exome sequencing data across the NF1 protein.

(E) Fraction of NF1 missense and truncating mutations co-occurring with RAS hot-spot or non-BRAF/RAS hot-spot mutations. (Mut, mutation).

See also Figure S1.
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Table 1. Implications for Clinical Management Based on Features Identified by Comprehensive Molecular TCGA Analysis

Mutation Subtypes BRAF RAS NF1 Triple Wild-Type
1MAPK pathway 1BRAF V600, K601 1(N/H/K) RAS G12,

G13, Q61

1NF1 LoF mut; (BRAF

non-hot-spot mut)

1KIT COSMIC mut/amp,

PDGFRa amp, KDR

(VEGFR2) amp; rare

COSMIC GNA11 mut,

GNAQ mut
2Cell-cycle pathway CDKN2A mut/del/h-meth

(�60%); 2(CDK4

COSMIC mut)

CDKN2A mut/del/h-meth

(�70%); CCND1 amp

(�10%), 2(CDK4

COSMIC mut)

CDKN2A mut/del/h-meth

(�70%); RB1 mut

(�10%)

CDKN2A mut/del/h-meth

(�40%); CCND1 amp

(�10%), 2CDK4 amp

(15%)
3DNA damage response

and cell death pathways

TP53 mut (�10%);
3(note: TP53 wild-type in

�90% of BRAF subtype)

TP53 mut (20%) TP53 mut (�30%) 3MDM2 amp (�15%);
3BCL2 upregulation

4PI3K/Akt pathway 4PTEN mut/del (�20%);
4(rare AKT1/3 and

PIK3CA COSMIC mut)

4AKT3 overexpression

(�40%); 4(rare AKT1/3

and PIK3CA COSMIC

mut)

4AKT3 overexpression

(�30%)

4AKT3 overexpression

(�20%)

5Epigenetics 5IDH1 mut, 5(rare EZH2

COSMIC mut); 5ARID2

mut (�15%)

5IDH1 mut, 5(rare EZH2

COSMIC mut); 5ARID2

mut (�15%)

5IDH1 mut, 5(EZH2 mut);
5ARID2 mut (�30%)

5IDH1 mut, 5(rare EZH2

COSMIC mut)

Telomerase pathway Promoter mut (�75%) Promoter mut (�70%) Promoter mut (�85%) Promoter mut (< 10%);

TERT amp (�15%)

Other pathways PD-L1 amp, MITF amp,

PPP6C mut (�10%)

PPP6C mut (�15%)

6High immune infiltration

(pathology)

�30% �25% �25% �40%

Class 1: Clinically actionable 1BRAF inhibitors; 1MEK

inhibitors

1MEK inhibitors 1C-KIT inhibitors

(imatinib, dasatinib,

nilotinib, sunitinib); PKC

inhibitors (AEB071)
2CDK inhibitors 1,2CDK inhibitors 2CDK inhibitors
3MDM2/p53 interaction

inhibitors

3MDM2/p53 interaction

inhibitors
4PI3K/Akt/mTOR inhibitors 4PI3K/Akt/mTOR inhibitors 4PI3K/Akt/mTOR inhibitors 4PI3K/Akt/mTOR inhibitors

6immunotherapies (mAb against immune checkpoint proteins, high dose bolus IL-2, interferon-a2b)

Class 2: Translationally

actionable

1ERK inhibitors 1ERK inhibitors 1MEK inhibitors;
1ERK inhibitors

5IDH1 inhibitors 5IDH1 inhibitors 5IDH1 inhibitors 5IDH1 inhibitors
5EZH2 inhibitors 5EZH2 inhibitors 5EZH2 inhibitors 5EZH2 inhibitors

(PPP6C) Aurora kinase

inhibitors

(PPP6C) Aurora kinase

inhibitors

Class 3: Pre-clinical 5ARID2 chromatin

remodelers (synthetic

lethality)

5ARID2 chromatin

remodelers (synthetic

lethality)

5ARID2 chromatin

remodelers (synthetic

lethality)

3(BCL2) BH3 mimemitcs

Prominent mechanisms of pathway alterations in BRAF, RAS, NF1 and Triple Wild-Type (WT) subtypes with potential predictive genetic alterations

indicated (1, 2, 3, 4, 5, 6) for Class 1 (clinically actionable alterations), Class 2 (translationally actionable that still require additional data [evidence] to

support use in point-of-care decision making), and Class 3 (pre-clinical evidence has demonstrated biological importance but has not yet demon-

strated clinical relevance) biomarkers. High immune infiltration (pathology) is percentage of samples in respective mutation subtype with LScores

of 5–6. Amp, amplification; del, deletion; mut, mutation, h-meth, hypermethylation.
hot-spot mutations were anti-correlated with hot-spot NRAS

mutations (Fisher’s exact p < 1e�15). In contrast, BRAF non-

hot-spot mutations (including eight exon 11 mutations) co-

occurred with RAS (N/H/K) hot-spot and NF1 mutations (Fig-

ures 1B and 1C).
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RAS Subtype

The second major subtype is defined by the presence of RAS

hot-spot mutations, including known amino acid changes with

functional consequences, in all three RAS family members (N-,

K- and H-RAS). Overall, 28% (n = 88) had NRAS somatic



mutations. Of those, 86 had hot-spot mutations, including Q61R

(n = 35), Q61K (n = 28), Q61L (n = 11), Q61H (n = 4), 61_62QE >

HK (n = 1), G12R/D/A (n = 4), and G13R/D (n = 3). We also iden-

tified less-frequent mutations in other RAS family members,

including four hot-spot HRAS (G13D, G13S, and Q61K [n = 2])

and three KRAS (G12D, G12R, and Q61R) mutations; all were

mutually exclusive with NRAS and BRAF V600 and K601

mutations.

NF1 Subtype

The third most frequently observed SMG in the MAPK pathway

was NF1, which was mutated in 14% of samples. More than

half of its mutations were predicted to be loss-of-function (LoF)

events, including 27 nonsense, 9 splice-site, and 4 frame-shift in-

dels out of 65 mutations (InVEx LoF analysis: p = 1.8e�11, Q =

9.1e�12) (Figures 1D and 1E).NF1 subtype (n = 28) had the high-

est mutation prevalence (39 mutations/Mb, more than double

that of the other three subtypes). Since NF1 is a GTPase-acti-

vating protein known to downregulate RAS activity through its

intrinsic GTPase activity, LoF mutation of NF1 can be viewed

as an alternative way to activate the canonical MAPK signaling

pathway. Indeed, in this cohort, NF1 was mutated in 38.7% of

non-hot-spot BRAF/NRAS melanomas (29/75) and in �70% of

non-hot-spot BRAF/NRAS samples with a UV-signature (26/

38) (Figure 1A). Furthermore,NF1mutations were anti-correlated

with hot-spot BRAF mutations (p = 1.9e�9), but not hot-spot

RAS mutations (Figure 1A).

Triple Wild-Type Subtype

We defined the Triple-WT subtype (n = 46) as a heterogeneous

subgroup characterized by a lack of hot-spot BRAF, N/H/K-

RAS, or NF1 mutations. This lack of hot-spot mutations was

not due to lower tumor purity or ploidy, since power calculation

taking into account sample-specific purity and ploidy (Carter

et al., 2012) showed that our sequencing coverage is powered

to detect sub-clonal mutations at a 6%allelic fraction on average

in Triple-WT subtype (see Supplemental Experimental Proce-

dures). To identify rare low-frequency driver mutations in this

subtype, we cross-referenced all observed SNVs to recurrently

mutated base pairs (n > 20) in the COSMIC database v60 and

identified 11 additional genes with recurrent COSMIC mutations

(Table S2E). Several COSMIC mutations, including known

drivers of uveal melanoma—GNAQ (n = 1) and GNA11 (n = 2),

KIT (n = 6), as well as CTNNB1 (n = 3) and EZH2 (n = 1)—were

found in the Triple-WT subtype.

Molecular Characteristics of the Four Genomic
Subtypes
Clinically, patients in the BRAF subtype were younger than pa-

tients in the other subtypes, while those in the NF1 subtype

were significantly older (rank sum p = 0.008). Regardless of sub-

type, patients with TP53 mutant melanomas had significantly

higher mutation counts and number of C>T transitions (rank

sum p = 1.35 e�05 and p = 1.1 e�05, respectively). However,

no significant difference was observed in post-accession sur-

vival (i.e., survival calculated from date of biospecimen collec-

tion/accession to date of last follow-up or death, see Supple-

mental Experimental Procedures). Therefore, we next explored

the molecular heterogeneity among these genomic subtypes

by integrative analyses.
UV Signature

We noted that only 30% (14/46) of samples in the Triple-WT sub-

type harbored a UV signature, compared to 90.7% of samples

with a BRAF hot-spot mutation (136/150), 93.5% with a RAS

(N-H-K) hot-spot mutation (86/92), and 92.9% of the NF1 sub-

type (26/28) (Figure S1I) (Fisher’s exact test p = 1e�15). In

contrast, Triple-WT samples had more copy-number changes

and complex structural arrangements compared to the other

groups.

Somatic Copy-Number Alterations

We assessed the patterns of somatic copy-number alteration

(CNA) across subtypes. Although global patterns of arm-level al-

terations were similar, the Triple-WT had significantly more

copy-number segments (Figures S2A and S2B) and was en-

riched for focal amplifications targeting known oncogenes. For

example, we found significant 4q12 focal amplification contain-

ing the oncogene KIT only in the Triple-WT cohort (Figure 2A).

Two other adjacent oncogenes, PDGFRA and KDR (also known

as VEGFR2), were frequently co-amplified with KIT (Figure 2B).

We also observed high-level focal CNAs containing the onco-

genes CDK4 and CCND1 (p < 0.01, FDR < 0.05), consistent

with previous studies (Curtin et al., 2005), as well as MDM2

and TERT (p < 0.05, FDR < 0.05) to be significantly enriched in

Triple-WTmelanomas (Figures 2B and 2C). In contrast, focal am-

plifications of BRAF, the melanocyte lineage-specific oncogene

MITF (p < 0.01, FDR < 0.05), and the ligand for the co-inhibitory

immune checkpoint protein PD-1, PD-L1 gene (CD274), were

observed at significant frequencies in the BRAFmutant subtype

(Figures 2, S2C, and S2D), whereas NRAS amplifications co-

occurred in tumors with NRAS mutations (Figure S2C). CD274

amplifications (which encodes PD-L1) are particularly note-

worthy given the potential clinical value of PD-L1 expression in

predicting response to PD-1 pathway inhibitors (Tumeh et al.,

2014).

Structural Rearrangements

To define fusion events, we performed an integrative analysis us-

ing copy-number (n = 333), RNA-seq (n = 331), and whole-

genome sequencing (WGS) data complemented by low-pass

(n = 119) and deep (n = 38) sequencing. In total, 224 candidate

fusion drivers were identified (Table S3A). Although there was

only one recurrent fusion (GRM8-CNTNAP2, n = 2), we discov-

ered a number of melanoma-associated genes recurrently fused

to various gene partners (Figure S2E), including BRAF (ATG7-

BRAF and TAX1BP1-BRAF), RAF1 (TRAK1-RAF1, RAF1-

AGGF1, and CLCN6-RAF1), and AKT3 (CEP170-AKT3, AKT3-

PLD5, ZEB2-AKT3, and ARHGAP30-AKT3). We also identified

three MITF fusions (MITF-FOXP1, CADM2-MITF, and

FRMD4B-MITF) and three HMGA2 fusions (PCBP2-HMGA2,

TSFM-HMGA2, andSENP1-HMGA2). Eight of the 224 candidate

driver fusions (ATG7-BRAF, TAX1BP1-BRAF, LBH-FLT4,

LCLAT1-EPHA3, TRAK1-RAF1, CLCN6-RAF1, CPSF4L-ERBB4,

and MOBKL1B-EPHB1) possessed a predicted intact kinase

domain. Although additional functional studies are required to

determine the role of these fusions in melanoma, unbiased

pathway analyses of candidate fusions suggest biological func-

tions relevant to melanoma (Tables S3B and S3C).

We saw significant enrichment for the 224 predicted fusion

drivers in the Triple-WT subtype (p = 2e�04) (Figure S2F). Using
Cell 161, 1681–1696, June 18, 2015 ª2015 Elsevier Inc. 1685



A

B

C

(legend on next page)

1686 Cell 161, 1681–1696, June 18, 2015 ª2015 Elsevier Inc.



ShatterSeek followed by manual review (see Supplemental

Experimental Procedures), we identified complex rearrange-

ment events in 38% of samples (45/117) (Table S1D). Like fusion

events, complex structural rearrangements were enriched in the

Triple-WT subtype (11/16, Fisher’s exact test p = 0.00098),

particularly in those lacking a UV signature (7/7). Taken together

with the pattern of somatic CNAs and the lower frequency of

samples possessing a UV signature (�30%), these results sug-

gest that, unlike other subtypes, other mutational processes

that involve structural rearrangement of the genome drive the

malignant phenotype of Triple-WT melanomas.

TERT Promoter Mutations

We confirmed mutually exclusive TERT promoter mutations

C228T and C250T (Horn et al., 2013; Huang et al., 2013) in

23.5% and 40.9% of the 115 samples analyzed, respectively.

Interestingly, only the C228T mutation was associated with

elevated TERTmRNA expression (rank-sum test, p = 0.001) (Fig-

ure S2G) and contrasts with glioblastoma (GBM), in which both

mutations were linked to increased expression (Brennan et al.,

2013). TERT promoter mutations were observed in 75.0% (39/

52) of BRAF, 71.9% (23/32) of RAS, and 83.3% (10/12) of NF1

subtypes but in only 6.7% (1/15) of Triple-WT (p = 8e�5, Fig-

ure S2H), suggesting an alternative mechanism of TERT activa-

tion (e.g., TERT amplification or rearrangement; see above) in the

Triple-WT melanomas.

CIMP Phenotype

While a higher frequency of NRAS hot-spot mutations (OR = 2.3,

p = 0.003) and a lower frequency of BRAF hot-spot mutations

(OR = 0.4, p = 0.0008) were found in the CIMP cluster defined

by DNA methylation profiles (EEP), the strongest associations

of CIMP were with IDH1 (OR = 4.05, p = 0.005) and ARID2

(OR = 3.5, p = 0.0003) mutations (Figure S1F), both of which

are chromatin-remodeling genes. Those observations suggest

that, despite the intriguing correlations, the CIMP phenotype is

not driven by the events responsible for genotypic subtypes of

melanoma.

Signaling Pathways

Classical signaling pathway diagrams suggest that BRAF, RAS

(N/H/K), and NF1 subtypes share common downstream

signaling. We analyzed RPPA profiles of 181 cancer-related total

proteins and phosphoproteins in 200 melanoma samples to

further assess downstream signaling among subtypes. Not sur-

prisingly, components of the MAPK, PI(3)K, and apoptotic

signaling pathways were differentially activated by BRAF/

RAS(N/H/K)/NF1 driver mutations (Figures 3 and S3). Although,

for example, the upstream phospho-MAP2K1/MAP2K2 (MEK1/

2) S217/S221 was elevated in both BRAF and RAS (N/H/K)

hot-spot mutation subtypes (Figure 3A), the highest relative me-

dian activation of phospho-T202/Y204MAPK1/MAPK3 (ERK1/2)
Figure 2. Landscape of Copy-Number Alterations in Melanoma

(A) GISTIC 2 analysis across four subtypes with selected highlighted genes from

(B) Fraction of BRAF, RAS (N/H/K), NF1, and Triple-WT subtypes with focal amp

KDR,MDM2, CDK4, CCND1, and TERT (right). Asterisk indicates significant incre

Fisher’s exact test (p < 0.01, FDR < 0.05).

(C) Landscape ofmutation subtypes, selected cosmicmutations, and subtype-spe

mutation subtype (BRAF, RAS, NF1, and Triple-WT) (top), color-coded matrix o

indicated) (middle), and type of melanoma specimen (primary or metastasis) and

See also Figure S2.
was observed in the RAS (N/H/K) mutant subgroup (Figure 3B).

As predicted by copy-number analysis, Triple-WT tumors

showed the highest median KIT protein abundance (Figure 3C).

In contrast,NF1mutantmelanomas had the highestmedian level

of CRAF expression, highlighting differential MAPK activation in

this subtype (Figure 3D). Other examples of differential subtype-

specific signaling included higher median levels of the anti-

apoptotic protein BCL-2 in the Triple-WT subtype (Figure 3E)

and regulators of insulin signaling (IGFBP2) in BRAF hot-spot

mutants (Figure 3F). Additional proteins involved in the PI(3)K/

mTOR and epithelial-mesenchymal transition pathways were

also significantly associated with particular mutation subtypes

(Figure S3).

Molecular Pathways

To broaden our view of the commonmolecular processes dysre-

gulated in melanoma, we integrated mutation, copy-number,

and methylation data to identify recurrently targeted pathways

and signaling interactions involving significantly altered genes

in all samples (n = 318) (Figures S4A–S4D). We manually curated

the genetic alterations by BRAF, RAS (N/H/K), NF1, and Triple-

WT subtypes (Figure 4A) and found that RAS (N/H/K)-MAPK-

AKT, RB1/CDKN2A cell-cycle pathways, and MDM2/TP53

apoptosis pathways were altered in 91%, 69%, and 19% of

cases, respectively. TP53mutations were foundmore frequently

inBRAF,RAS, andNF1 tumors, compared to Triple-WT, in which

MDM2 amplifications weremore frequent. Interestingly, of the 49

TP53 mutations identified, 46 (93.9%) were found in UV signa-

ture samples. Although CDKN2A/B alterations were nearly

evenly distributed across subtypes, CDK4 and CCND1 amplifi-

cations were more frequent in Triple-WTs, and RB1 mutations

were detected in a higher fraction of NF1 subtype tumors. Of

the 12 RB1 mutations identified in this study, all were in UV

signature samples. Finally, as previously reported (Pollock

et al., 2003), PTEN mutations and deletions were more frequent

in BRAF-mutant melanomas (Figures 4A and 4B), whereas

amplification and mRNA overexpression of AKT3 were signifi-

cantly enriched in RAS (N/H/K), NF1, and Triple-WT compared

to the BRAF subtype (p < 0.05) (Figure 4B).

Transcriptomic Classification of Melanoma
We performed consensus hierarchical clustering analysis

(TCGA, 2014a) of the 1,500 genes with the most variant

expression levels in 329 samples and identified three robust

stable clusters. Based on the gene function(s) of discrimina-

tory mRNA transcripts, we named the clusters ‘‘immune’’

(n = 168; 51%), ‘‘keratin’’ (n = 102; 31%), and ‘‘MITF-low’’

(n = 59; 18%) (Figure 5A and Table S4A). Interestingly, post-

accession survival of patients with regionally metastatic tu-

mors was significantly different among the three clusters
significant minimal common regions.

lifications determined by GISTIC 2 for BRAF and MITF (left) and KIT, PDGFRA,

ase in amplification in the indicated mutation subtype compared to the rest by

cific enriched copy-number amplifications. Per samplemutation rate, age, and

f individual mutations and amplifications (specific BRAF and NRAS mutations

mutation spectra for all samples (bottom) are shown.
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Figure 3. Analysis of Protein Expression

Levels in Melanoma Samples

Individual protein levels were determined by RPPA

across mutation subtypes.

(A) Phospho-MAP2K1/MAP2K2 (MEK1/2) S217/

S221 was elevated in both the BRAF and RAS hot-

spot mutation subtypes compared to NF1 and

Triple-WT.

(B) Only RAS hot-spot mutant samples showed

higher median levels of phospho-T202 Y204

MAPK1/MAPK3 (ERK1/2).

(C) Triple-WT melanomas had the highest median

KIT protein expression.

(D and E) (D) NF1mutant melanomas had a higher

median level of CRAF expression, and Triple-WT

had higher BCL-2 levels (E) compared to BRAF

and RAS subtypes.

(F) Median IGFBP2 levels were highest in BRAF

hot-spot mutant samples. Kruskal-Wallis test, and

the post hoc Kruskal Nemenyi test for pairwise

comparisons.

*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001,

#p = 5.4e�6. See also Figure S3.
(p = 0.001, Figure 5B), suggesting that these transcriptomi-

cally defined subclasses may be biologically relevant and

distinct.

‘‘Immune’’ Subclass

A significant number of genes overexpressed in this subclass

were associated with immune cell subsets (T cells, B cells,

and NK cells), immune signaling molecules, co-stimulatory

and co-inhibitory immune checkpoint proteins, cytokines, che-

mokines, and corresponding receptors (Tables S4A–S4B). As

74% (113/152) of samples in the subclass were procured

from regional lymph nodes (Pearson’s chi-square test, p <

0.001), we first assessed whether high expression of im-

mune-related genes reflected the biology of melanoma-infil-

trating immune cells or a non-specific admixture of ‘‘contami-

nating’’ adjacent lymphoid tissue in the samples (Erdag et al.,

2012). Specifically, we compared the expression of nine

curated immune gene signatures (comprising 793 genes and

detailed in Table S4B) in 172 samples from lymph nodes

and 157 tumors from other tissues (Figures S5A and S5B).

Reassuringly, there was no significant difference in expression

of tested immune signatures between the samples from lymph

nodes and non-lymph node tissues (Figure S5A), suggesting

that the transcriptomic features of the immune subclass

were not due to contaminating adjacent lymph node tissue.

Patients with regionally metastatic tumors in this subclass

showed more favorable post-accession survival than did those
1688 Cell 161, 1681–1696, June 18, 2015 ª2015 Elsevier Inc.
in the other two subclasses (log-rank

test, p = 0.003), in accordance with pre-

vious reports of the host immune

response in melanoma (Azimi et al.,

2012).

‘‘Keratin’’ Subclass

This cluster was characterized by high

expression of genes associated with ker-

atins, pigmentation, and epithelium, as
well as genes associated with neuronal development or other or-

gan-specific embryologic development (Table S4A). Approxi-

mately 74% of primary melanomas clustered within this group

(Pearson’s chi-square test, p < 0.001) and showed high expres-

sion of genes previously reported to be elevated in primary mel-

anomas. Included were several keratins, kallikreins, and other

epidermal genes. However, 25 keratin cluster samples were

derived from regional lymph nodes, suggesting that expression

of the epithelial transcripts was not due solely to admixture of

epithelial tissue (such as skin epidermis) with melanoma tumor

tissue, at least for this organ site of procurement; indeed, kera-

tins and other epithelial markers have been found in some mela-

noma cell lines (Shields et al., 2007). Of note, regional metastatic

melanomas exhibited worse outcome when compared with

stage-matched samples assigned to the immune or MITF-low

cluster (log-rank, p = 0.0007) (Figure 5B), supporting the view

that the keratin cluster represents, at least in part, a previously

unappreciated but biologically distinct melanoma subtype with

adverse prognosis.

‘‘MITF-Low’’ Subclass

The ‘‘MITF-low’’ cluster was characterized by low expression of

genes associated with pigmentation and epithelial expression

(Table S4A), including several MITF target genes and genes

involved in immunomodulation, adhesion, migration, and extra-

cellular matrix. This cluster was significantly enriched with genes

preferentially expressed within the nervous system and/or



A

B

Figure 4. Pathways Altered in Melanoma

(A) Percentage of recurrently altered pathways in the four melanoma subtypes (BRAF = V600/K601 mutants, RAS [N/H/K] = G12, G13, and Q61 mutants)

through integration of mutation, copy-number variation, and hypermethylation data are indicated (n = 316; not shown are one hyper-mutated and one co-

occurring BRAF/NRAS hot-spot mutant sample). Manual curated pathway shows percentage of TP53, CDKN2A/RB1, and MAPK/AKT pathway across all

samples (note: percentages of alterations of MAPK and AKT pathway are combined, given their high level of interconnectivity). a, amplification; d, deletion, m,

mutation.

(B) Co-occurring somatic CNAs, mutations, and mRNA expression (color code indicated on graph) for the PI(3)K/mTOR pathway across the four mutation

subtypes (left). Bar graph indicating percentage of fraction of subtypes with AKT3 activation or PTEN inactivation (right). Enrichment of a given alteration in a

subgroup is estimated by Fisher’s exact test.

See also Figure S4.
associated with neuronal development or other organ-specific

embryologic development.

Integrative Molecular Subtypes

Using the iCluster algorithm (see Supplemental Experimental

Procedures), we next integrated multiple genomic dimensions

(mutation, somatic CNAs, DNA methylation, and expression) to

define molecular subtypes and to unravel hidden associations

of the various subtypes identified in each genomic dimension

(Figures 5A, S1D, S5C, and S7 and Data S1 and Table S4). We

observed clear associations between the keratin expression

subtype, the CIMP subtype, and a miRNA subgroup (cluster 3),
which had a relatively lower frequency of hot-spot BRAF muta-

tions (Figure S5D, iClust 1). Conversely, ‘‘MITF-low’’ cluster sam-

ples had a higher percentage of BRAF-hot-spot mutations

(compared with ‘‘keratin’’ and ‘‘immune’’ clusters: 66% versus

33%and 45%, respectively; Fisher’s exact test, p = 0.0003 (visu-

alized in Figure S5E). In addition, a lower percentage of tumor

samples that were classified as ‘‘MITF-low’’ had no mutations

in either BRAF, NRAS, and NF1 compared with ‘‘keratin’’ and

‘‘immune’’ clusters (3% versus 21% and 14%, respectively;

Fisher’s exact test, p = 0.006) (Figure S5E). We also discerned

associations with the hypomethylation subgroup and the MITF
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Figure 5. Integrative Analysis across Multiple Molecular Data Platforms Provides Insights into the Biology and Prognostic Significance of

Immune Infiltrates in Cutaneous Melanoma

(A and B) (A) Unsupervised clustering of 329 melanoma samples using the top 1,500 genes showing the maximum absolute deviation identify three clusters

defined as ‘‘immune-high,’’ ‘‘keratin-high,’’ and ‘‘microphthalmia-associated transcription factor (MITF)-low’’ based on gene function of discriminatory mRNAs

and (B) post-accession survival curves for RNA subgroups.

(C) Distribution of lymphocytic scores determined by histopathology analysis according to sample type (described in detail in the Supplemental Experimental

Procedures).

(D) Post-accession survival curves for high and low lymphocytic infiltration scores.

(legend continued on next page)
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expression class (Figure S5D, iClust 2). Finally, we observed a

low copy-number subgroup, a normal-like methylation profile,

and enrichment for tumors possessing the immune mRNA

expression signature, consistent with the presence of lympho-

cytic infiltration (Figure S5D, iClust 3).

Clinical Significance of the Immune Transcriptomic
Subclass
Demonstrating the clinical relevance of molecular classification

requires interpretation in the context of existing clinical practice.

As a proof of concept, we addressed the clinical relevance and

potential application of the observation that the ‘‘immune’’ tran-

scriptomic subclass was associated with improved post-acces-

sion survival of patients with regional metastatic melanoma.

Although tumor-infiltrating lymphocytes have been associated

with favorable prognosis inprimarymelanoma (Azimi et al., 2012),

such an association has not been investigated in regional dis-

ease. To assesswhether our transcriptomic classification ofmel-

anoma captures the biology of tumor-associated lymphocytes,

we complemented the clinicopathological annotation provided

by tissue source sites with a standardized pathology review of

frozen section slides by TCGA Analysis Working Group (AWG)

dermatopathologists (see Author Contributions); the density

and distribution of melanoma-associated lymphocytes were

used to derive a ‘‘lymphocyte score’’ (LScore), a semiquantitative

measure of the number of lymphocytes in a sample (see Supple-

mental Experimental Procedures). Additional histopathological

parameters includedpercent tumor content, percent necrotic tis-

sue, and amount of melanin pigment. Melanomas from regional

or distant lymph nodes showed significantly higher LScore than

tumors from other tissues (Wilcoxon rank-sum test, p = 5.6e�8;

Figure 5C). Among the subgroup of regional metastatic mela-

nomas, elevated LScore was significantly associated with pro-

longed post-accession survival (Figure 5D), corroborating prior

observations that tumor-associated lymphocytes are a favorable

prognostic factor in melanoma (Bogunovic et al., 2009; Mihm

et al., 1996). Remarkably, there was a striking concordance be-

tween high LScore (3–6) and assignment to the immune subclass

(Figure S6A) (Fisher’s exact test, p < 1e�12).

Next, we asked whether transcriptomic features that defined

the ‘‘immune’’ cluster are seen at the protein level by RPPA. In

particular, we focused on two immune-related proteins, LCK

and SYK, non-receptor tyrosine kinases commonly associated

with T- and B-lymphocyte signaling. Interestingly, unsupervised

clustering of RPPA data revealed that LCK and SYK are highly

expressed in a subset of samples (Figure S5C) that are enriched

with tumors in the transcriptomic immune subclass and/or that

have high LScores (Figure 5E). However, high LCK, but not

SYK, protein expressionwas also strongly associatedwith favor-

able post-accession survival of patients with regionally metasta-

tic tumors (Figure 5F and data not shown). Tumors with high

LScores tended to be assigned to the transcriptomic immune
(E) Overlap of LCK high and low protein expression obtained from RPPA data w

subgroups determined by mRNA clustering analysis.

(F) Association of LCK protein with post-accession survival. Three curves describ

rank test).

See also Figures S5, S6, and S7 and Data S1.
subclass and also express elevated levels of LCK protein (Fig-

ures S6A and S6B). These three characteristics overlapped

considerably, and a combination of the three predicted mela-

noma outcome more accurately than did any one of the features

alone (log-rank, p = 8.0e�6, post-accession survival in regionally

metastatic tumors; Figure S6C). This observation is consistent

with the hypothesis that the three reflect unique (although over-

lapping) biological characteristics, each of which confers favor-

able outcomes in melanoma.

Finally, recognizing that unsupervised cluster analysis of a

transcriptomic profile is not readily applicable to clinical practice,

we tested the hypothesis that a bivariate model of LScore and

LCK protein expression level offers a comparable prognostic

prediction. Indeed, tumors with high LScore and high LCK

expression were associated with significantly improved post-

accession survival compared with those having low LScore

and low LCK expression (log-rank p = 7.9e�5, hazard ratio =

5.5, tumors with both high LScore and LCK versus both scores

low; Figure S6D). Multivariable Cox proportional hazard regres-

sion also demonstrated that both LScore and LCK expression

have independent predictive value in the two-factor model (Fig-

ure S6E). Overall, this integrative analysis suggests that a com-

bination of LCK protein expression and pathologists’ scoring of

tumor-infiltrating lymphocytes may be more prognostic for pa-

tientswith nodalmetastases than assessment of tumor-infiltrating

lymphocytes alone.

DISCUSSION

We propose here that cutaneous melanomas can be divided into

four genomic subtypes, designated BRAF, RAS (N/H/K), NF1,

and Triple-WT. Such a genomic classification provides a frame-

work for exploring how additional molecular alterations may

explain observed biological and clinical differences among the

subtypes. It also provides signposts for identification of drug-

able targets and predictive biomarkers, as well as potentially

useful guidance for decisions about therapy.

Based on evidence that (1) BRAF/RAS (N/H/K) mutant mela-

nomas are driven, at least in part, by MAPK signaling (Hodis

et al., 2012; Krauthammer et al., 2012); (2) melanomas lacking

NF1 expression are dependent on MAPK signaling and respond

to MAPK inhibitors (Maertens et al., 2013; Nissan et al., 2014);

and (3) there are clinicopathologic and molecular differences

among melanomas that do not have hot-spot mutations in

BRAF/RAS but differ with respect to NF1mutation status, mela-

noma joins two other RTK/RAS-driven solid tumor types (GBM

and lung adenocarcinoma) analyzed by the TCGA, among which

a subset of these cancers has loss-of-function NF1 mutations

(TCGA, 2008, 2014b).

We suggest that significantly mutated genes and other molec-

ular alterations identified here, combined with previously

described melanoma-associated genes, are likely to have
ith lymphocytic infiltration scores determined by pathology and RNA immune

e cumulative survival rates of three tertile patient subsets (p = 0.007 with log-
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important implications for prognosis and therapy (Table 1). For

example, we postulate that patients with BRAF wild-type, NF1

mutant melanomas respond to MEK and/or ERK inhibitors

(Maertens et al., 2013; Nissan et al., 2014; Whittaker et al.,

2013), supported by cell line studies that demonstrate that at

least someNF1mutant cell lines respond toMEK inhibitors (Ran-

zani et al., 2015). In the setting of frequently co-occurring NF1

and ARID2 mutations, synthetic lethal strategies targeting chro-

matin modifiers represent a rational area for pre-clinical research

(Helming et al., 2014). In addition to therapeutic strategies

currently under clinical development, melanomas with RAS

(N/H/K) mutations, frequently concurrent with PPP6C hot-spot

mutations, may provide therapeutic opportunities for combina-

torial treatment strategies that include Aurora kinase inhibition

(Gold et al., 2014). Previous studies have shown frequent co-

occurrence of BRAFmutations and PTENmutations or deletions

(Tsao et al., 2012). Here, we showed a higher frequency of ampli-

fications and overexpression of AKT3 in RAS, NF1, and Triple-

WT melanomas, which may provide additional biomarkers to

support the use of combination MEK and PI(3)K/AKT/mTOR

pathway inhibitors in such subtypes. In addition, mutations in

PIK3CA (E545K, H1047L) and AKT1/3 (E17K) in BRAF, as well

asRAS (N/H/K)mutantmelanoma (Table S2E), may serve as bio-

markers that predict response to the above-mentioned targeted

therapies.

Candidate driver events in Triple-WT melanomas provide op-

portunities for pre-clinical and clinical efforts to effectively target

these molecular aberrations. These include KIT mutations/am-

plifications, co-amplified RTKs, PDGFRA and KDR (VEGFR2),

and even rare GNAQ Q209P (n = 1) and GNA11 Q209L (n = 2)

mutations (sample IDs: TCGA-ER-A3ES, TCGA-ER-A3ET, and

TCGA-ER-A2NF)—the latter of which, interestingly, co-occur

with hot-spot SF3B1 R625H mutations (n = 2 for co-occurrence

with GNA11/Q hot-spot mutations) in our cutaneous melanoma

cohort, but not BAP1 mutations, which are frequently found in

metastatic uveal melanoma (Field and Harbour, 2014). Although

GNAQ and GNA11 hot-spot mutations are common in uveal

melanomas, they have also been reported in blue nevi and pri-

mary melanocytic neoplasms of the central nervous system

(Küsters-Vandevelde et al., 2010). Our classification supports

the use of imatinib and dasatinib to treat patients with KIT-

mutated/amplified cutaneous melanomas (Carvajal et al.,

2011; Hodi et al., 2008; Lutzky et al., 2008; Terheyden et al.,

2010) and consideration of combination therapies with sorafe-

nib, crenolanib, regorafenib, and pazopanib to target co-ampli-

fied RTKs, PDGFRA, and KDR (VEGFR2). Triple-WT melanomas

with amplifications of MDM2 and overexpression of BCL2 may

respond to inhibitors such as AMG 232, nutlin-3, and BH3 mi-

metics, currently in preclinical or clinical development in mela-

noma. Such agents may also be beneficial for patients with

wild-type TP53 across the genetic subtypes (Frederick et al.,

2014; Ji et al., 2013; Sun et al., 2014). Other potentially action-

able mutations include recurrent IDH1 R132 (�6%) and EZH2

Y641 mutations (<1%) (Table S2E).

Overall, approximately half of all cases were assigned to the

‘‘immune’’ subtype. Interestingly, the response rate to inhibitors

of the PD-1/PD-L1 pathway is approximately one-third (Brahmer

et al., 2012; Hamid et al., 2013; Topalian et al., 2012). In our
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study, expression of both PD-1 and PD-L1 was significantly

higher in ‘‘immune’’ compared to each of the two other groups

(Figure S6F), similar to a recent report showing that pre-existing

CD8+ T cells distinctly located at the invasive tumor margin are

associated with immunohistochemical expression of PD-1 and

PD-L1, and was also predictive of response to pembrolizumab

(Tumeh et al., 2014). However, it is important to emphasize

that our data do not prove that the immune subtype represents

a population responsive to immunotherapies.

We show that immune infiltration is statistically correlated with

more favorable prognosis, irrespective of genomic subtype. The

lack of a genomic correlation with outcome provides a plausible

molecular explanation for the lack of observed preferential anti-

tumor responses in clinical trials employing immune checkpoint

blockade, at least in relation to BRAF status (Ascierto et al.,

2014; Robert et al., 2014). Nonetheless, despite these data,

the question of whether specific mutated melanoma antigens

are responsible for differences in the degree of tumor infiltration

by lymphocytes is an area of active investigation (Robbins et al.,

2013; Snyder et al., 2014). Our combined RPPA analysis,

including exploration of LCK and SYK proteins that are associ-

ated with T cell and B cell signaling effectors, respectively,

suggests that T cell, but not B cell, signaling has prognostic sig-

nificance. This relevance of T cells, and in particular effector

CD8+ T cells, is congruent with clinical benefit seen with high-

dose bolus IL-2, a T cell growth factor used as a therapeutic

agent for advanced melanoma (McArthur and Ribas, 2013).

Among the cohort of patients in this study with advanced

stage III disease (Balch et al., 2010), high lymphocytic score

and immune-associated gene expression was associated with

prolonged post-accession survival, potentially reflecting a clin-

ical benefit of immunotherapies for stage III melanoma patients

(Eggermont et al., 2008; Kirkwood et al., 1996). Such markers

should be considered for further evaluation and potential inte-

gration into future AJCC staging systems and associated prog-

nostic models, as well as for exploration as a potential predictor

of response to adjuvant therapies for stage III disease.

EXPERIMENTAL PROCEDURES

Patients and Biospecimens

Eligible patients had a diagnosis of either primary or metastatic cutaneous

melanoma or metastatic melanoma of unknown primary (Balch et al., 2009;

Dasgupta et al., 1963), but no previous systemic therapy (except that adjuvant

interferon-a R90 days prior was permitted); the site from which the bio-

specimen was collected could not have been previously treated at any time

with radiotherapy. Biospecimens from resected primary and/or metastatic

melanomas were obtained from patients with appropriate informed consent

and institutional review board or ethics board approval. Biospecimens were

classified as either primary or metastatic based on the available clinical and

pathological information. Independent pathological review confirmed that

each biospecimen was consistent with melanoma. As specimens were

required to have sufficient mass and quality for downstream molecular

analyses, those from advanced primary and/or metastatic tumors were over-

represented. The complete methodology for patient eligibility, clinical and

pathological data elements, biospecimen acquisition, and molecular analyte

extraction is described in the Supplemental Experimental Procedures.

Data Generation

Data from at least one platform were available for 333 patients. The data types

included: (1) clinical, (2) whole-exome sequencing, (3) DNA copy-number and



single-nucleotide polymorphism array, (4) whole-genome sequencing, (5)

RNA-sequencing data, (6) DNA methylation, (7) reverse-phase protein array,

and (8) microRNA sequencing. Details of data generation and analyses are

described in the Supplemental Experimental Procedures. All data sets are

available through the Cancer Genome Atlas (TCGA) data portal (https://

tcga-data.nci.nih.gov/tcga).

Whole-Genome and Exome-Sequencing Data Analysis

Whole-exome sequencing was performed as previously described (TCGA,

2012). Exome capture was performed using the Agilent Sure-Select Human

All Exon v2.0, 44 Mb kit, followed by 2 3 76 bp paired-end sequencing on

the Illumina HiSeq platform. Read alignment and processing were performed

using BWA and the Picard and Firehose pipelines at the Broad Institute. For

each file, Picard generates a single BAM file that includes reads, calibrated

quantities, and alignments to the genome. The Firehose pipeline performs

quality control, local realignment, mutation calling, small insertion and deletion

identification, and coverage calculations, among other analyses. Complete

details of the pipeline can be found online at http://www.broadinstitute.org/

cancer/cga. Whole-genome sequencing methods are described in detail in

the Supplemental Experimental Procedures.

RNA-Sequencing Data Analysis

Total RNA was converted to mRNA libraries using the lllumina mRNA TruSeq

kit, following the manufacturer’s directions. Libraries were sequenced on the

Illumina HiSeq 2000 as previously described (TCGA, 2012). Read mapping,

gene expression quantitation, and identification of fusion transcripts are

described in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, four tables, and one data file and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2015.05.044.
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